Spectral Learning of General Weighted Automata via Constrained Matrix Completion

نویسندگان

  • Borja Balle
  • Mehryar Mohri
چکیده

Many tasks in text and speech processing and computational biology require estimating functions mapping strings to real numbers. A broad class of such functions can be defined by weighted automata. Spectral methods based on the singular value decomposition of a Hankel matrix have been recently proposed for learning a probability distribution represented by a weighted automaton from a training sample drawn according to this same target distribution. In this paper, we show how spectral methods can be extended to the problem of learning a general weighted automaton from a sample generated by an arbitrary distribution. The main obstruction to this approach is that, in general, some entries of the Hankel matrix may be missing. We present a solution to this problem based on solving a constrained matrix completion problem. Combining these two ingredients, matrix completion and spectral method, a whole new family of algorithms for learning general weighted automata is obtained. We present generalization bounds for a particular algorithm in this family. The proofs rely on a joint stability analysis of matrix completion and spectral learning.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unsupervised Spectral Learning of WCFG as Low-rank Matrix Completion

We derive a spectral method for unsupervised learning of Weighted Context Free Grammars. We frame WCFG induction as finding a Hankel matrix that has low rank and is linearly constrained to represent a function computed by inside-outside recursions. The proposed algorithm picks the grammar that agrees with a sample and is the simplest with respect to the nuclear norm of the Hankel matrix.

متن کامل

On the Rademacher Complexity of Weighted Automata

Weighted automata (WFAs) provide a general framework for the representation of functions mapping strings to real numbers. They include as special instances deterministic finite automata (DFAs), hidden Markov models (HMMs), and predictive states representations (PSRs). In recent years, there has been a renewed interest in weighted automata in machine learning due to the development of efficient ...

متن کامل

Spectral Learning of Weighted Automata A Forward-Backward Perspective

In recent years we have seen the development of efficient provably correct algorithms for learning Weighted Finite Automata (WFA). Most of these algorithms avoid the known hardness results by defining parameters beyond the number of states that can be used to quantify the complexity of learning automata under a particular distribution. One such class of methods are the so-called spectral algori...

متن کامل

Generalization Bounds for Weighted Automata

This paper studies the problem of learning weighted automata from a finite labeled training sample. We consider several general families of weighted automata defined in terms of three different measures: the norm of an automaton’s weights, the norm of the function computed by an automaton, or the norm of the corresponding Hankel matrix. We present new data-dependent generalization guarantees fo...

متن کامل

Supplemental Materials for “ Spectral Compressed Sensing via Structured Matrix Completion ”

This supplemental document presents details concerning analytical derivations that support the theorems made in the main text " Spectral Compressed Sensing via Structured Matrix Completion " , accepted to the 30th International Conference on Machine Learning (ICML 2013). One can find here the detailed proof of Theorems 1-3.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012